Partial Least Squares Regression (PLSR) – What Is It? How To Use It.

Fredric M. Ham, Ph.D., FIEEE, FSPIE, FINNS Dean, College of Engineering Harris Professor of Electrical Engineering

Florida Institute of Technology High Tech with a Human TouchTM

COLLEGE OF ENGINEERING

Introduction

- Partial Least Squares Regression (PLSR) is a factor analysis-based method.
- It is used to construct predictive models when the number of factors is very large and highly collinear (factors are significantly redundant)
- What are factors? Answer: Measured variables
- These factors are used many times to explain, regulate, or predict the behavior of other variables or the responses.

Florida Institute of Technology

- Multiple Linear Regression (MLR) methods work well when (a) the number of factors is small, (b) they are not significantly collinear (redundant) and (c) there exists a well-defined relationship to the system responses. DATA → INFORMATION
- When any or all of the above conditions don't exist MLR will fail.
- That is when PLSR becomes a very valuable modeling tool.

Florida Institute of Technology

- Therefore, when one is faced with many variables, the relationship between the inputs (independent variables) and the responses (dependent variables) are not well-known, the PLSR statistical calibration modeling approach can be employed.
- This calibration model when properly constructed can produce highly robust predictive results.
- PLSR methods are known as bilinear factor models.

Florida Institute of Technology

- It is important to note that PLSR is used to "predict" a target value (that is, predict a response) given a measured quantity. It is not used to discover the underlying relationship between the system variables.
- PLSR is an excellent method used for prediction when the physical system characteristics, or the details of the process, is not well understood.
- Through the factor analysis approach, unneeded factors can be removed that can improve the predictive performance of the calibration model.

Florida Institute of Technology

- The removal of the unwanted factors can be carried out without detailed knowledge of their characteristics.
- Thus, unwanted, obscuring components that can exist in the data can be removed in a systematic manner, thus improving the predictive performance of the calibration model.
- Some applications include: statistical calibration model development for parameter estimation, estimation of sinusoids in additive noise, parametric system identification, robust event classification ...

The goal here is to have a useful predictive tool when we finish this tutorial that can be used for your future work in many cases ...

Let's get into the details ...

Florida Institute of Technology

Part I

* We will nor ì neq 7 Mal eas vequess ion asic

COLLEGE OF ENGINEERING

Cach velat tonshi A 0 easurement andthe dssocia $ues, C_1, C_2, \ldots, C_m$ avq everals what is b le perfort Saw A

COLLEGE OF ENGINEERING

eads to a very basic Problem <u>A</u> = 22 q2 àm each vout is a measure There are n columns weat and Ó Oet N OPS and 5' cali pra H ned evver -Ot JON: N đ E=C-Abo

COLLEGE OF ENGINEERING

05 eI ar Ummyno Anave • 5

$$\mathcal{E}(\underline{b}_{q}) = \frac{1}{2} \|e\|_{z}^{2} - \frac{1}{2} e^{T} e^{-\frac{1}{2}} \left[(\underline{C} - \underline{A} \underline{b}_{q})^{T} (\underline{C} - \underline{A} \underline{b}_{q}) \right] = C^{T} C - C^{T} \underline{A} \underline{b}_{q} - \underline{b}_{q}^{T} \underline{A}^{T} \underline{C} + \underline{b}_{q}^{T} \underline{A}^{T} \underline{b}_{q} + \underline{b}_{q}^{T} \underline{b}_{q} + \underline{b}_{q}^{T} \underline{A}^{T} \underline{b}_{q} \underline{b}_{q} + \underline{b}_{q}^{T} \underline{b}_{q} \underline{b}_{q$$

17

have a -is desired 0 600 w In uninimal a0 Ud S, 0 Or even \mathcal{O} Bresideri Ol May eves ave of MA FUR None-the-lessofill ex equession COLLEGE OF ENGINEERING Florida Institute of Technology High Tech with a Human TouchTM We Engineer the Future[™]

reve alle requession 7 S 10 e calibra DUC 8 7 A r N MLOSY 1 \wedge . ^ Florida Institute of Technology High Tech with a Human TouchTM **COLLEGE OF ENGINEERING**



ress ws have aver all SSUM V2 110 0 EME Ce 0 evea you decl med Suvener only one forget value Cunivaviate Calibrat na on aviance erna Vix MXN

Medsuvener Ξ measurement 2 Measurement Mxn Mean center and variance sol SSAU eges on volie D 50 -od an index h (under coun ILS is inifially O ONC

COLLEGE OF ENGINEERING

p. 2. Form the weight ' Vector 20 eRnxi odive/ This is actually a ChSElassica cast=squares) Salibration of qp, he mode is q Ven $A = A - 2v_h' + F$, mxn Where EAE

tonis: - Squares So W east -----1 - novinalize, 20/1 2-novin, i.e., by dividing 40 ٨ Againgiven EA, CZ, AER MXM; CER Solvefrom the model: (32) 1 + 12 oding Jector: e weight 78 motion do : evrop cos

COLLEGE OF ENGINEERING

ĥ 20. 3 20-(10) 6 T

reguddient 0 1 37 **COLLEGE OF ENGINEERING** Florida Institute of Technology High Tech with a Human TouchTM We Engineer the Future[™]

de d-S ٨ which 12 PVO vector

COLLEGE OF ENGINEERING

a weighted average of the voio e enerts the data matrix A, where the Vergetts on the average are proportioned to the elements in c. There hat vertors ave constructed to be ofleo normal. >3. Geneverton of the scove Vourable vector, É E R^{m×1} Lithis step, A is now worken wirt. he latent verilles (ouscoves), i.e.,

th 201 + E.A -SANAVES SC a; aleas =>because the zon save 1.00. + FRA we defind e evol cost fund on do: COLLEGE OF ENGINEERING Florida Institute of Technology High Tech with a Human TouchTM We Engineer the Future[™]

th where: th ٠ . . Ł. 3 2 valieù OU NXM MX1 1×1 201 7+ t ウエ NX) IXM WXN

COLLEGE OF ENGINEERING

 $= \frac{1}{2} \left(\pm \frac{1}{20} + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} \right)$ 1 Ain 十级一位 - and

Scove Vector 5 ave of and -Squares estimate 425 C A the weight vegvessind . A an ectors, i.e., wi Oddino 0 67 e alla m worter , and Veferesent $= Q^{-}$ enuno Ne amount south INS rud ai avo Cacho SOCIATED ve l)ew Cent ine ou -ime,

Florida Institute of Technology

COLLEGE OF ENGINEERING

Part II

LEURSSION du reas Soldin Data Matrix: AC Siven dela: EA, C Devoved EXPVESSIONS NX Weig 00 odin Scovered able $=h = A 2\hat{\partial}_{T}$ 3 5 as fav as we got 0 X TA A. c 1 . . COLLEGE OF ENGINEERING Florida Institute of Technology High Tech with a Human TouchTM We Engineer the Future[™]

re scove Vee L. * Heve the scove vector In thes sometimes even velevred to as It intensities in the new coording flese ave 10 o the element 5 velat ector Using alived Dession

where again I ste the treep dssocia Joner Qaa aftonship be ween? L he ve modeled as ! 2 Squares Soly 1 C COLLEGE OF ENGINEERING Florida Institute of Technology High Tech with a Human TouchTM We Engineer the Future[™]

ave 10-6 ou e approved univer Contain associat / <u>q</u> 129

 $\mathcal{L} = V_h \dot{f}_h + e_e(\tau)$ ne an evver cost for $|\mathcal{M}(\mathcal{M}) = \pm ||\mathcal{C}_{d}|_{2}^{2} = \pm \mathcal{C}_{c} = \mathcal{C}_{c}(\mathcal{B})$ mite ec= e-Vhth (B) $\mathcal{L}^{n}(V_{h}) = \pm e^{T}e_{c} = \pm ($

ere-ervh Eh $\mathbf{N}_{\mathbf{A}}$ = - Λ_{T} + 2 V1 $\gamma \tau$ A 0 в ... ٩

COLLEGE OF ENGINEERING

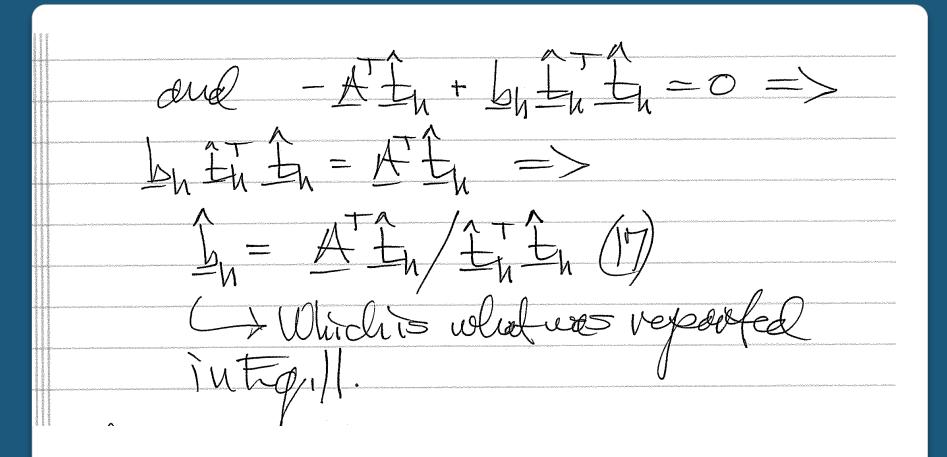
which is what 105 vepou 5 Deneval loading ١X Ver E e now ma pero flokel as!

Squalles Do, ane 1272 g with the nodelin Eq. 10 nee envour ost OW:

Dh λ 0 0 ١ ------(**ĵ**) **COLLEGE OF ENGINEERING** Florida Institute of Technology High Tech with a Human Touch TM We Engineer the Future[™]

6n ()B +-----⊁ ¥ ъ Ф в

COLLEGE OF ENGINEERING



Notes: represe b, Jult and del S 10 SCOL lee The by æp al ìИ *reve, $>_{\mathcal{C}}$ vom Eq. O, which is vet A= Eb + E $(|\vartheta)$ thearter We can see tet sove vector, E, with oding

COLLEGE OF ENGINEERING

vector, In, will give a PhS opprox-imation to fledat a materix, A. Hever ve. imation wation to the voios of A can plainer as: vesiduals are un s: Ā COLLEGE OF ENGINEERING Florida Institute of Technology High Tech with a Human TouchTM We Engineer the Future[™]

* Also, from Eq. 7, repeated here, Q=Vnfte (20) we can write the vosided of the twoot vector a, as! vesiduels: ec= e - Vintin (R) on approximation to e is given as

COLLEGE OF ENGINEERING

based on the information in the Molor A Increment h, and e EA OINC continue four e dest oading veder Ó the Summal able :

COLLEGE OF ENGINEERING

PLS1 Calibration Algorithm

step 1. Pretreatment of the data: mean center $A \in \Re^{mxn}$ and $c \in \Re^{m \times l}$, and variance scale A if necessary. Set the index h to 1 (where h is the number of PLS factors) step 2. Forming the weight loading vector, $\hat{w}_h \in \Re^{n \times 1}$ $A = cw_h^T + E_A$ ($E_A \in \Re^{mxn}$ contains the A residuals) model: least-squares solution: $\hat{w}_h = A^T c / c^T c$ normalize \hat{w}_h , i.e., $\hat{w}_h \leftarrow \frac{w_h}{\|\hat{w}_h\|_c}$ step 3. Generation of the score (latent variable) vector, $\hat{t}_h \in \Re^{mx1}$ $A = t_h \hat{w}_h^T + E_A$ model: least-squares solution: $\hat{t}_h = A\hat{w}_h / \hat{w}_h^T \hat{w}_h = A\hat{w}_h$

COLLEGE OF ENGINEERING

step 4. Relating the score vector, \hat{t}_h , to the elements of c

model:
$$c = v_h \hat{t}_h + e_c$$
 $(e_c \in \Re^{mx1} \text{ contains the } c \text{ residuals})$ least-squares solution: $\hat{v}_h = \hat{t}_h^T c / \hat{t}_h^T \hat{t}_h$ $(v_h \in \Re \text{ is the scalar regression coefficient}$ (inner relationship) relating \hat{t}_h to the
elements in c)

step 5. Generation of $\hat{b}_h \in \Re^{nx^1}$, the *loading vector* for A

- model: $A = \hat{t}_h b_h^T + E_A$ least-squares solution: $\hat{b}_h = A^T \hat{t}_h / \hat{t}_h^T \hat{t}_h$
- step 6. Calculation of the residuals in A and c
 - A residuals: $E_A = A \hat{t}_h \hat{b}_h^T$ c residuals: $e_c = c \hat{v}_h \hat{t}_h$
- step 7. Increment h, substitute E_A for A and e_c for c in step 2 and continue for the desired number of loading vectors (or the optimal number of PLS factors, h^o[†])
 † If all of the factors were retained, h^o = m (for m < n) or h^o = n (for m ≥ n)

COLLEGE OF ENGINEERING

PLS1 Calibration Algorithm

AND DESCRIPTION OF THE OWNER.	And the second scheme in the second scheme is the second scheme in the second scheme is the second scheme in the	the second s			
step 1.	Pretreatment of the data:				
	mean center $A \in \Re^{mxn}$ and				
	$c \in \mathfrak{R}^{m \times l}$, and variance scale A				
	if necessary. Set the index h to 1				
	(where h is the number of				
step 2.	2. Forming the weight loading vector, $\hat{w}_h \in \Re^{n \times 1}$				
	model:	$A = c w_h^T + E_A$	$(E_A \in \Re^{mxn}$ contains the A residuals)		
	least-squares solution:	$\hat{w}_h = A^T c / c^T c$			
		normalize \hat{w}_h , i	$\text{e., } \hat{w}_h \leftarrow \frac{\hat{w}_h}{\left\ \hat{w}_h\right\ _2}$		
step 3. Generation of the score (latent variable) vector, $\hat{t}_h \in \Re^{mx1}$					
	model:	$A = t_h \hat{w}_h^T + E_A$			
	least-squares solution:	$\hat{t}_h = A\hat{w}_h / \hat{w}_h^T \hat{w}_h$	$\hat{v}_h = A\hat{w}_h$		
step 4.	Relating the score vector,	the score vector, \hat{t}_h , to the elements of c			
	model:	$c = v_h \hat{t}_h + e_c$	$(e_c \in \Re^{mx1}$ contains the <i>c</i> residuals)		
	least-squares solution:	$\hat{v}_h = \hat{t}_h^T c / \hat{t}_h^T \hat{t}_h$	$(v_h \in \Re \text{ is the scalar regression coefficient})$		
			(inner relationship) relating \hat{t}_h to the		
			elements in c)		
step 5.	Generation of $\hat{b}_h \in \Re^{n \times 1}$,	, the <i>loading vector</i> for A			
	model:	$A = \hat{t}_h b_h^T + E_A$			
	least-squares solution:	$\hat{b}_h = A^T \hat{t}_h / \hat{t}_h^T \hat{t}$	h		
step 6.	step 6. Calculation of the residuals in A and c				
	A residuals:	$E_A = A - \hat{t}_h \hat{b}_h^T$			
	c residuals:	$e_c = c \cdot \hat{v}_h \hat{t}_h$			
step 7.	tep 7. Increment h, substitute E_A for A and e_c for c in step 2 and continue for the desired				
number of loading vectors (or the optimal number of PLS factors, $h^{o\dagger}$)					
† If all of the factors were retained, $h^o = m$ (for $m < n$) or $h^o = n$ (for $m \ge n$)					

Florida Institute of Technology High Tech with a Human TouchTM

COLLEGE OF ENGINEERING

SI Calibration Junel OD Ą Num T 1102 C Ø 8 <u>S</u>. P) Shit ...,h^o Ð Seh \mathbb{S} \sum ine $'\rho_{I}$

AIN De 11 Indy only one W.H S 2S llowno, iuvo/ Ò a -oll. hase 100 OI. the OF 5,2.e., ho nxh° - N=x=h=> -d, b z ..., b, o and

COLLEGE OF ENGINEERING

 $\vec{Y} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \dots & \vec{V}_h \\ \vec{V} & \vec{V}_2 & \dots & \vec{V}_h \end{bmatrix}$ nxh° hxn nxh 0 NX Ô Ľ << Morn.

COLLEGE OF ENGINEERING

usiness at 0 calibra-1001 SO Sauss 3 0 s assume SPI e æ ab

COLLEGE OF ENGINEERING

ting. Th revefore, J tor. 25 es en q. an noe ane 11A 21 -29615 Joi Palal Ctivein time, 3 left is used i what e and ront plase, ien, Florida Institute of Technology High Tech with a Human TouchTM COLLEGE OF ENGINEERING We Engineer the Future[™]

eve XZA

XSO MELY Involves Home, Jown Itort can be compared and a known vector) Q+ the training dat a weve meanie Mean where 2, 12+ grouds ett Z

COLLEGE OF ENGINEERING

PLS1 Prediction Algorithm step 1. From the PLS1 calibration phase, form the following matrices (for the optimal or desired number of PLS factors, $h = h^{o}$) $\hat{W}^T = [\hat{w}_1 \ \hat{w}_2 \cdots \hat{w}_{h^o}] \quad \text{(where: } \hat{W} \in \Re^{h^o xn})$ $\hat{B}^T = [\hat{b}_1 \ \hat{b}_2 \cdots \hat{b}_{h^o}] \quad \text{(where: } \hat{B} \in \mathfrak{R}^{h^o xn}\text{)}$ $\hat{\mathbf{v}}^T = [\hat{\mathbf{v}}_1 \ \hat{\mathbf{v}}_2 \cdots \hat{\mathbf{v}}_{h^o}] \qquad (\text{where:} \ \hat{\mathbf{v}} \in \Re^{h^o x I})$ step 2. Compute the final regression coefficients, or the optimal calibration model, \hat{b}_{fPLSR} $\hat{b}_{fPLSR} = \hat{W}^T (\hat{B}\hat{W}^T)^{-1} \hat{v}$ (Note: rank $(\hat{B}\hat{W}^T) = h^o$, where $h^o \ll m \text{ or } n$) step 3. Given a set of measurements, A_{test} (not used to develop the calibration model \hat{b}_{fPLSR}), estimate the outputs (or dependent variables) $\hat{c}_{test} = A_{test} b_{fPLSR}$ or if the training data were mean centered (where the mean of the dependent reference data is given as \overline{c}_{train}) $\hat{c}_{test} = A_{test}\hat{b}_{fPLSR} + \overline{c}_{train}$

COLLEGE OF ENGINEERING

to cover is pointo , only i em number MOSE e an wesee. 5 12t Yno. SE ン Mest _ test, Mtest Mtestx where Mtest XI l's é ; s ave element and vespeaffic ectors g COLLEGE OF ENGINEERING Florida Institute of Technology High Tech with a Human TouchTM

Eq. 28 MS ouve of ntch cau in run be use No

es how one can fo o optimel Men Atrain, Letrain (where q is some number brattoning = 2,..., we don't trow we ei ei

COLLEGE OF ENGINEERING

-, & test & and n Madel & Fine 1 USTUP Hest, ibva test-plus, ctest-pl 3 Compi 25 N S $) \mathcal{Q}_{\pm}$

€ SEP(1), SEP(2), ..., SEP(q)) € plot these SEP values as factors Winine final house, h. JEP 0 h, number

Problem Assignment

It is desired to develop a Partial Least-Squares (PLS) statistical calibration model using spectrophotometric data (synthetic data) to predict concentrations of glucose. In the MATLAB workspace: "ECE5248_Prob_14_data_set_mat" you will find the following:

TEST_data_1	100x100	80000 double array
TRAIN_data_1	100x100	80000 double array
test_reference_1	100x1	800 double array
train_reference_1	100x1	800 double array

Grand total is 20200 elements using 161600 bytes

TEST_data_1	$=>A_{test}$
TRAIN_data_1	$=>A_{train}$
test_reference_1	$=> c_{test}$
train_reference_1	$=> c_{train}$

Tasks (Perform every task):

(1) Write the MATLAB function (m-file) to carry out the Calibration Phase of PLS. This should be a single function that can take in { A_{train}, c_{train}}¹ and extract the weight loading vectors, ŵ_b, loading vectors, b_b, and the regression coefficients,

 \hat{v}_h , for $h=1,2, \dots, h^o$

- (2) Write a MATLAB function (m-file) that can build the statistical calibration model using the information found in Part (1).
- (3) Develop the PLS statistical calibration model by determining the *optimal number* of PLS factors. How many PLS factors did you need? Plot the components of the PLS calibration model and clearly mark the graph's axes.
- (4) Plot the first four weight loading vectors and clearly mark the graph's axes.
- (5) Given the data { A_{test}, c_{test}} use A_{test} predict the glucose concentrations, i.e., determine ĉ_{ser}.
- (6) Plot the glucose concentration predictions, ĉ_{ust} (using PLS), versus the actual concentrations, c_{ust}, on one graph but only the discrete points. Also plot on the same graph the "y=x" line (continuous) so the results can be easily compared. Clearly mark the graph. What is the final SEP value using the PLS model?
- (7) Develop a classical least-squares (CLS) calibration model and determine the glucose concentration predictions, ĉ_{ust} (using CLS).
- (8) Plot the glucose concentration predictions, c_{hert} (using CLS), versus the actual concentrations, c_{hert}, on one graph but only the discrete points. Also plot on the same graph the "y=x" line (continuous) so the results can be easily compared. Clearly mark the graph. What is the final SEP value using the CLS model?

¹ The data matrices are assumed to have NIR (near-infrared spectrophotometric data, synthetic), and the data in the target vectors are concentration of glucose with the units mg/dl).

Florida Institute of Technology

COLLEGE OF ENGINEERING

Generate Synthetic NIR Spectra Date

```
% Generates Synthetic Near-Infrared (NIR) Data
%
% Spectrum of the component of interest (could be NIR spectrum of
 glucose)
      Spi = .6*gaussd(30,100,15) + .3*gaussd(50,100,70);
% GAUSSD generates a Gaussian distribution
% Spectrum of obscuring component (NIR spectrum of water)
      Spo = .8*gaussd(10,100,20) + .6*gaussd(20,100,80);
      A = zeros(200, 100);
      for i = 1:200
          A(i,:) = i*Spi;
      enđ
% Concentrations (could be glucose concentrations)
      p = ones(100, 1);
      C1 = 1000*atan(.0001*A*p);
% Addition of the zero-mean Gaussian noise
      An = A + randn(200,100);
% Addition of the obscuring component
      An1 = zeros(200,100);
      for i =1:200
           An1(i:) = An(i,:) + (1000+30*randn)*Spo;
      end
% Form the Training and Test Data
% Training Spectra (each row is a NIR spectrum)
      TRAIN = An1 (1:2:200,:);
% Training Concentrations (target values)
      TRAINC = C1(1:2:200,:);
% Test Spectra (each row is a NIR spectrum)
      TEST = An1(2:2:200,:);
% Test Concentrations (target values)
      TESTC = C1(2:2:200,:);
clear p i A An An1 C1 Spi Spo
```


Florida Institute of Technology

%

COLLEGE OF ENGINEERING

PLSR Calibration MATLAB Code

function [W,B,V]=pls1cal(A,c,maxrank)

% [W,B,V]=pls1cal(A,c,maxrank) % % pls1cal.m extracts the PLS weight loading % vectors in the columns of W, the PLS % loading vectors in the columns of B, and % the PLS regression coefficients (or inner % relationships) in the column vector V. % % A = is an mxn matrix containing the training % data as rows % c = is an mx1 vector which contains the target % values (or repsonse variables) % maxrank = number of PLS factors to be retained % (i.e., h) % W = (n,h) matrix containing the PLS weight % loading vectors = (n,h) matrix containing the PLS loading % B % vectors % V = (h,1) vector containing the PLS regression % coefficients (or PLS inner relationships) % [m,n]=size(A); W=zeros(n,maxrank); B=zeros(n,maxrank); V=zeros(maxrank,1); for h=1:maxrank W(:,h)=(A'*c)/(c'*c);

$$\begin{split} & W(:,h) = (A^{**}c)/(c^{**}c); \\ & W(:,h) = W(:,h)/norm(W(:,h)); \\ & t = A^*W(:,h); \\ & V(h,1) = (t^{**}c)/(t^{**}t); \\ & B(:,h) = (A^{**}t)/(t^{**}t); \\ & A = A - t^*B(:,h)^{t}; \\ & c = c - V(h,1)^*t; \\ & end \end{split}$$

Florida Institute of Technology High Tech with a Human TouchTM

COLLEGE OF ENGINEERING

PLSR Calibration MATLAB Code

```
function [W,B,V]=pls1cal(A,c,maxrank)
[m,n]=size(A);
W=zeros(n,maxrank);
B=zeros(n,maxrank);
V=zeros(maxrank,1);
for h=1:maxrank
         W(:,h)=(A'*c)/(c'*c);
        W(:,h)=W(:,h)/norm(W(:,h));
      t=A*W(:,h);
     V(h,1)=(t'*c)/(t'*t);
    B(:,h)=(A'*t)/(t'*t);
 A=A-t*B(:,h)';
c=c-V(h,1)*t;
end
```


COLLEGE OF ENGINEERING

PLSR Prediction Method 1 MATLAB Code

function plscalmod = pls1prd1(W,B,V,maxrank) % plscalmod = pls1prd1(W,B,V,maxrank) % % pls1prd1.m generates the PLS calibration model. % % plscalmod = is an nx1 vector, the PLS calibration % model % maxrank = number of PLS factors to use % (i.e., h) = (n,h) matrix containing the PLS weight % W % loading vectors % B = (n,h) matrix containing the PLS loading % vectors % V = (h,1) vector containing the PLS regression % coefficients (or PLS inner relationships) %

% NOTE: To obtain predictions, the calibration model

- % (plscalmod) is used as follows:
- % cpredpls(mx1)=ATEST(mxn)*plscalmod(nx1)

%

plscalmod=W(:,1:maxrank)*inv(B(:,1:maxrank)'*W(:,1:maxrank))*V(1:maxrank,1);

Florida Institute of Technology High Tech with a Human TouchTM

COLLEGE OF ENGINEERING

PLSR Prediction Method 1 MATLAB Code

function plscalmod = pls1prd1(W,B,V,maxrank)
plscalmod=W(:,1:maxrank)*inv(B(:,1:maxrank)'*W(:,1:maxrank))*V(1:maxrank,1);

PLSR Prediction Method 2 (Recursive)

```
% pls1prd2 - predict the target vector
%
% [Cp] = pls1prd2(A,W,B,V);
%
% A - absorption given rowwise
% W - vectors of direction (W in Matlab)
% B - spectral factors (P in Matlab)
% V - concentration scores (B in Matlab)
%
% Cp - predicted concentrations
[M,N] = size(A);
Cp = zeros(M,1);
[N,H] = size(W);
a = A;
for i = 1:M
  for h = 1:H
   Cp(i) = Cp(i) + a(i,:) * W(:,h) * V(h,:);
   a(i,:) = a(i,:) - a(i,:) * W(:,h) * B(:,h)';
  end
end
```

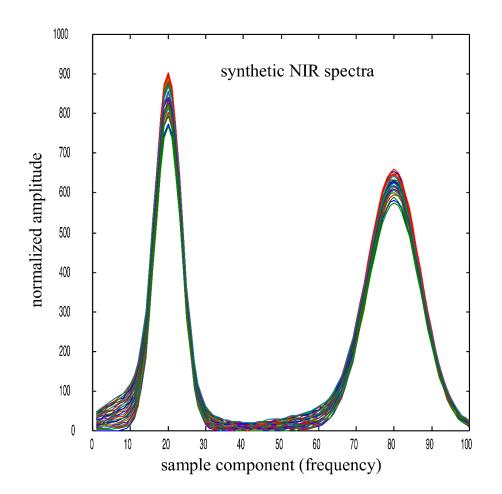

COLLEGE OF ENGINEERING

Example

Florida Institute of Technology High Tech with a Human TouchTM

COLLEGE OF ENGINEERING

Simulated NIR Spectra

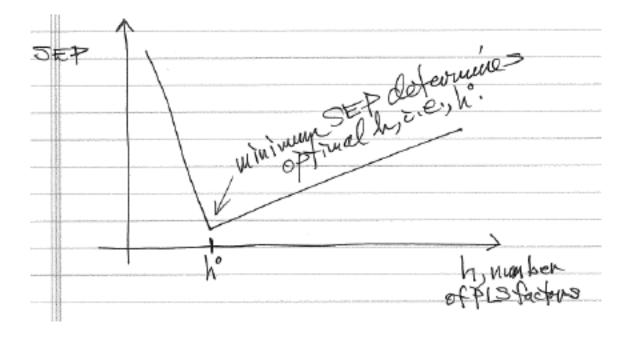


Training data for all three methods. This represents 25% of the total amount of training data (i.e., 25 spectra).

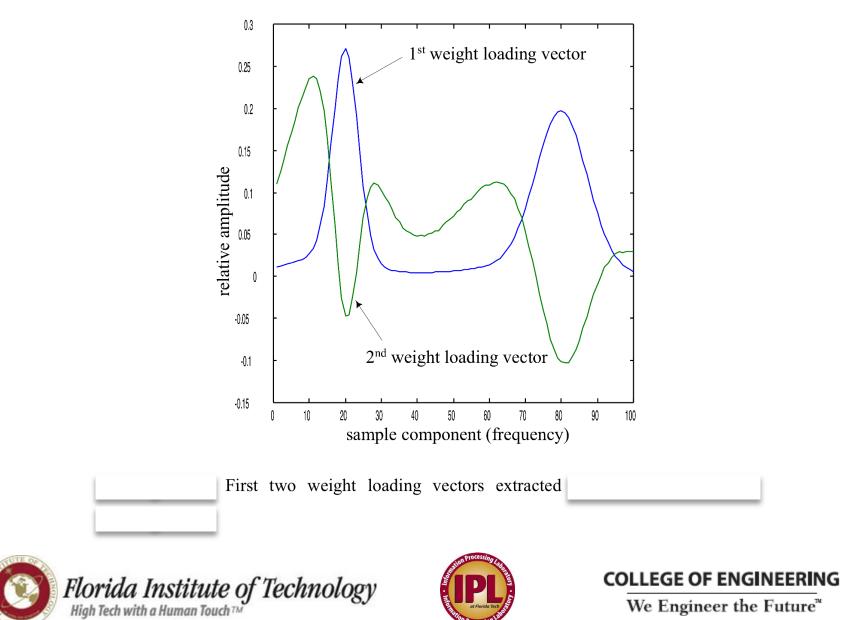
Florida Institute of Technology High Tech with a Human TouchTM

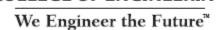
COLLEGE OF ENGINEERING

In this example, h° (*h* optimal) = 2! (Out of 100 factors available!)

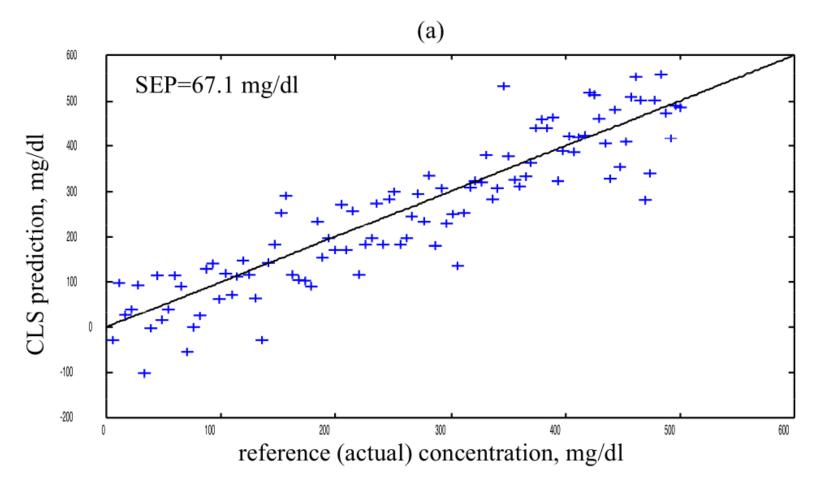


COLLEGE OF ENGINEERING

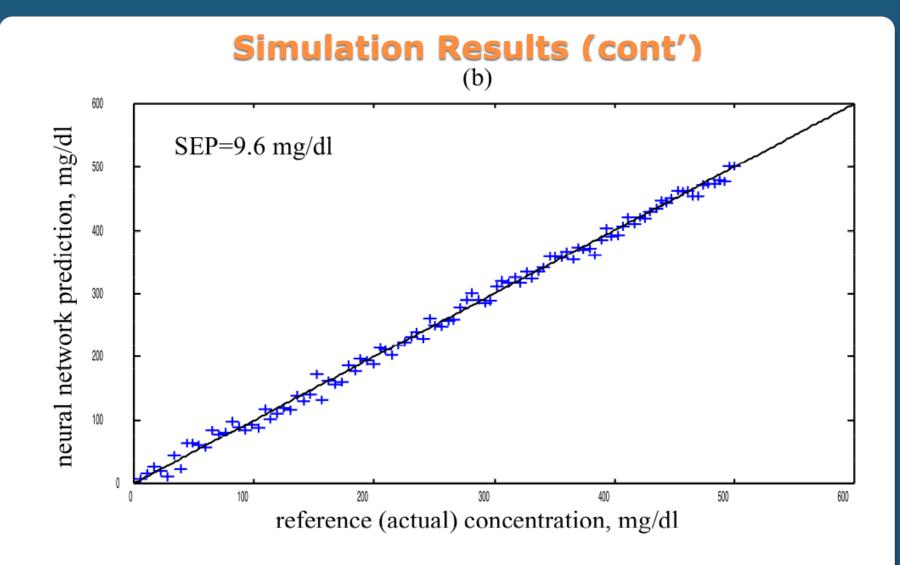




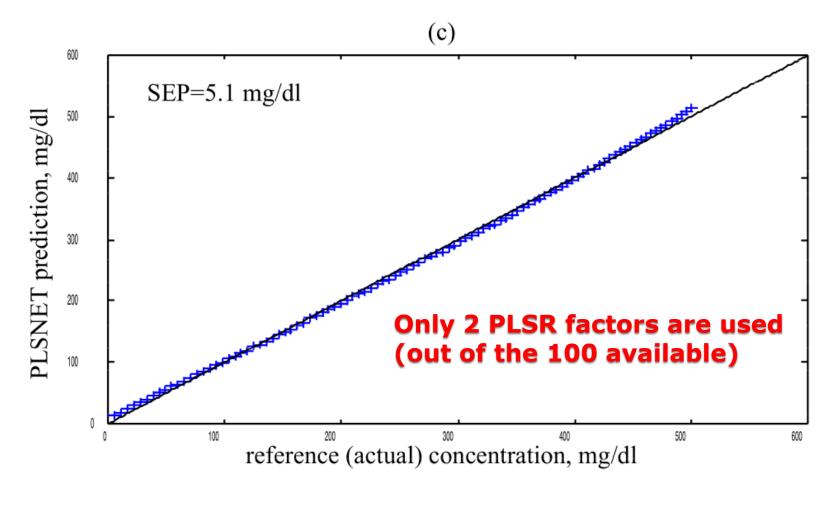
Simulation Results



COLLEGE OF ENGINEERING



Simulation Results (cont')



COLLEGE OF ENGINEERING

Thank You!

Fredric M. Ham, Ph.D. fmh@fit.edu fredric.ham@sit.kmutt.ac.th

Florida Institute of Technology High Tech with a Human TouchTM

